Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Study on correlation effect between factors of statistical hot spot factor for HTGR design

Fukaya, Yuji; Nishihara, Tetsuo

JAEA-Research 2016-001, 23 Pages, 2016/05

JAEA-Research-2016-001.pdf:3.31MB

A study on Correlation effect between elements of statistical hot spot factor for High Temperature Gas-cooled Reactor (HTGR) Design had been performed. Both of safety and reactor specification can be remained if the uncertainty is correctly propagated by revising hot spot factor. In this context, it is reported for light water reactor design that the propagated uncertainty can be reduced by statistical hot spot factors with numerical statistical approach, that is Monte Carlo method, because correlation effects for each factor can be considered. For HTGR with sleeve covered fuel, it is expected that the fuel temperature also reduces by employing the same approach because the gap between sleeve and fuel compact, which shows significant temperature increase, have direct correlation. In addition, Monte Carlo method treats correlation effect at the price of evaluating contribution of individual factor. Therefore, improved method based on conventional method has been developed in this study. Then, statistical hot spot factor for fuel temperature of HTGR was evaluated by Monte Carlo method and the improved method. As a result, it is not found significant difference between the result of the conventional method and the improved method. Moreover, usage of hot spot factor is investigated and we proposed new one reflecting the investigation.

Journal Articles

Determination of hot spot factors for thermal and hydraulic design of High Temperature Engineering Test Reactor (HTTR)

Maruyama, So; Murakami, Tomoyuki*; Fujii, Sadao*; Fujimoto, Nozomu; Tanaka, Toshiyuki; Sudo, Yukio; Saito, Shinzo

Proc. of the 1st JSME/ASME Joint Int. Conf. on Nuclear Engineering,Vol. 1, p.425 - 430, 1991/00

no abstracts in English

2 (Records 1-2 displayed on this page)
  • 1